Fast cluster bootstrap methods for linear regression models
James MacKinnon
Econometrics and Statistics, 2023, vol. 26, issue C, 52-71
Abstract:
Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For ordinary least squares (OLS) regression, a new algorithm is provided for the pairs cluster bootstrap, along with two algorithms for the wild cluster bootstrap. One of these is a new way to express an existing method. For instrumental variables (IV) regression, an efficient algorithm is provided for the wild restricted efficient cluster (WREC) bootstrap. All computations are based on matrices and vectors that contain sums of squares and cross-products for the observations within each cluster, which have to be computed just once before the bootstrap loop begins. Monte Carlo experiments are used to study the finite-sample properties of bootstrap Wald tests for OLS regression and of WREC bootstrap tests for IV regression.
Keywords: cluster-robust variance estimator; CRVE; wild cluster bootstrap; pairs cluster bootstrap; wild restricted efficient cluster bootstrap; bootstrap Wald test (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001404
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
Working Paper: Fast cluster bootstrap methods for linear regression models (2021)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:26:y:2023:i:c:p:52-71
DOI: 10.1016/j.ecosta.2021.11.009
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().