EconPapers    
Economics at your fingertips  
 

A Multivariate Randomized Response Model for Sensitive Binary Data

Amanda M.Y. Chu, Yasuhiro Omori, Hing-yu So and Mike K.P. So

Econometrics and Statistics, 2023, vol. 27, issue C, 16-35

Abstract: A new statistical method is proposed to combine the randomized response technique, probit modeling, and Bayesian analysis to analyze large-scale online surveys of multiple binary randomized responses. The proposed method is illustrated by analyzing sensitive dichotomous randomized responses on different types of drug administration error from nurses in a hospital cluster. A statistical challenge is that nurses’ true sensitive responses are unobservable because of a randomization scheme that protects their data privacy to answer the sensitive questions. Four main contributions of the paper are highlighted. The first is the construction of a generic statistical approach in modeling multivariate sensitive binary data collected from the randomized response technique. The second is studying the dependence of multivariate sensitive responses via statistical measures. The third is the calculation of an overall attitude score using sensitive responses. The last one is an illustration of the proposed statistical method for analyzing administration policies that potentially involve sensitive topics which are important to study but are not easily investigated via empirical studies. The particular healthcare example on drug administration policies demonstrated in this paper also presents a scientific way to elicit managerial strategies while protecting data privacy through analytics.

Keywords: Bayesian analysis; Data privacy; Multivariate probit models; Patient safety; Sensitive questions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000041
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:27:y:2023:i:c:p:16-35

DOI: 10.1016/j.ecosta.2022.01.003

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:27:y:2023:i:c:p:16-35