Numerical Methods for Finding A-optimal Designs Analytically
Ping-Yang Chen,
Ray-Bing Chen,
Yu-Shi Chen and
Weng Kee Wong
Econometrics and Statistics, 2023, vol. 28, issue C, 155-162
Abstract:
The traditional way in statistics to find optimal designs for regression models is an analytical approach. Technical conditions that may be restrictive in practice are sometimes imposed to obtain the analytical results. Even then, the mathematical technique is invariably not amendable to find an optimal design under a different criterion or for the same criterion with a slightly changed model, suggesting that developing flexible and effective algorithms to search for the optimum is very useful. In particular, numerical results from an algorithm can be helpful to find analytical descriptions of optimal designs. As an example, particle swarm optimization has been shown to be quite effective for finding optimal designs for hard design problems and this paper demonstrates how its output can be used to find new analytic A-optimal approximate designs for the Gamma and inverse Gaussian models, each with the inverse link function. The methodology is quite general and may be applied to find analytical A-optimal designs for other models, like the Poisson model with the log link function, or other types of optimal designs.
Keywords: A-optimal design; equivalence theorem; optimal approximate design; particle swarm optimization; Date of this version: (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000867
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:28:y:2023:i:c:p:155-162
DOI: 10.1016/j.ecosta.2022.09.005
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().