Bayesian estimation of realized GARCH-type models with application to financial tail risk management
Cathy W. S. Chen (),
Toshiaki Watanabe and
Edward M.H. Lin
Econometrics and Statistics, 2023, vol. 28, issue C, 30-46
Abstract:
Advances in the various realized GARCH models have proven effective in taking account of the bias in realized volatility (RV) introduced by microstructure noise and non-trading hours. They have been extended into nonlinear or long-memory patterns, including the realized exponential GARCH (EGARCH), realized heterogeneous autoregressive GARCH (HAR-GARCH), and realized threshold GARCH (TGARCH) models. These models with skew Student’s t-distribution are applied to quantile forecasts such as Value-at-Risk and expected shortfall of financial returns as well as volatility forecasting. Parameter estimation and quantile forecasting are built on Bayesian Markov chain Monte Carlo sampling methods. Backtesting measures are presented for both Value-at-Risk and expected shortfall forecasts and employ two loss functions to assess volatility forecasts. Results taken from the S&P500 in the U.S. market with approximately 5-year out-of-sample periods covering the COVID-19 pandemic period are reported as follows: (1) The realized HAR-GARCH model performs best in respect of violation rates and expected shortfall at the 1% and 5% significance levels. (2) The realized EGARCH model performs best with regard to volatility forecasts.
Keywords: Expected shortfall; Forecasting; Heterogeneous autoregressive (HAR) model; Markov chain Monte Carlo method; Realized volatility; Value-at-Risk (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000484
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:28:y:2023:i:c:p:30-46
DOI: 10.1016/j.ecosta.2021.03.006
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().