Estimation of Large Dynamic Covariance Matrices: A Selective Review
Degui Li
Econometrics and Statistics, 2024, vol. 29, issue C, 16-30
Abstract:
A personal review of some recent developments on estimating large dynamic covariance matrices whose entries are allowed to change over time is provided. The underlying covariance matrices are assumed to satisfy structural assumptions such as GARCH, approximate sparsity and conditional sparsity. Initially the review considers extensions of the classic GARCH model to multivariate and high-dimensional time series settings, and then focuses on some data-driven non- and semi-parametric models and estimation approaches for large covariance matrices which evolve smoothly over time or with some conditioning variables. Detection of multiple structural breaks in large covariance structures is also reviewed. Finally some relevant future directions are discussed.
Keywords: Covariance matrix; CUSUM statistic; Factor model; GARCH; Generalised shrinkage; Kernel estimation; Semi-parametric estimation; Sparsity; Structural breaks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000587
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:29:y:2024:i:c:p:16-30
DOI: 10.1016/j.ecosta.2021.04.008
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().