EconPapers    
Economics at your fingertips  
 

Multivariate Count Time Series Modelling

Konstantinos Fokianos

Econometrics and Statistics, 2024, vol. 31, issue C, 100-116

Abstract: Autoregressive models are reviewed for the analysis of multivariate count time series. A particular topic of interest which is discussed in detail is that of the choice of a suitable distribution for a vectors of count random variables. The focus is on three main approaches taken for multivariate count time series analysis: (a) integer autoregressive processes, (b) parameter-driven models and (c) observation-driven models. The aim is to highlight some recent methodological developments and propose some potentially useful research topics.

Keywords: auto-correlation; covariates; copula; estimation; multivariate count distribution; prediction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001374
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:31:y:2024:i:c:p:100-116

DOI: 10.1016/j.ecosta.2021.11.006

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:ecosta:v:31:y:2024:i:c:p:100-116