Edgeworth expansions for multivariate random sums
Farrukh Javed,
Nicola Loperfido and
Stepan Mazur
Econometrics and Statistics, 2024, vol. 31, issue C, 66-80
Abstract:
The sum of a random number of independent and identically distributed random vectors has a distribution which is not analytically tractable, in the general case. The problem has been addressed by means of asymptotic approximations embedding the number of summands in a stochastically increasing sequence. Another approach relies on fitting flexible and tractable parametric, multivariate distributions, as for example finite mixtures. Both approaches are investigated within the framework of Edgeworth expansions. A general formula for the fourth-order cumulants of the random sum of independent and identically distributed random vectors is derived and it is shown that the above mentioned asymptotic approach does not necessarily lead to valid asymptotic normal approximations. The problem is addressed by means of Edgeworth expansions. Both theoretical and empirical results suggest that mixtures of two multivariate normal distributions with proportional covariance matrices satisfactorily fit data generated from random sums where the counting random variable and the random summands are Poisson and multivariate skew-normal, respectively.
Keywords: Edgeworth expansion; Fourth cumulant; Random sum; Skew-normal (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000551
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
Working Paper: Edgeworth Expansions for Multivariate Random Sums (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:31:y:2024:i:c:p:66-80
DOI: 10.1016/j.ecosta.2021.04.005
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().