EconPapers    
Economics at your fingertips  
 

Risk Estimation With Composite Quantile Regression

Eliana Christou and Michael Grabchak

Econometrics and Statistics, 2025, vol. 33, issue C, 166-179

Abstract: New methods for the estimation of the popular risk measures expected shortfall (ES) and Value-at-Risk (VaR) are introduced. These are based on a novel variant of composite quantile regression (CQR), which allows for the simultaneous estimation of quantiles at several levels at once. An extensive simulation study is performed, along with a data analysis based on two major US market indices and two financial sector stocks. The results suggest that the method has a good finite sample performance. This is the first methodology to use CQR for risk estimation.

Keywords: Composite Quantile Regression; Expected Shortfall; Single-Index; Value-at-Risk (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000442
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:33:y:2025:i:c:p:166-179

DOI: 10.1016/j.ecosta.2022.04.004

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:166-179