Directional Tests and Confidence Bounds on Economic Inequality
Jean-Marie Dufour,
Emmanuel Flachaire,
Lynda Khalaf and
Abdallah Zalghout
Econometrics and Statistics, 2025, vol. 33, issue C, 230-245
Abstract:
For standard inequality measures, distribution-free inference methods are valid under conventional assumptions that fail to hold in applications. Resulting Bahadur-Savage type failures are documented, and correction methods are provided. Proposed solutions leverage on the positive support prior that can be defended with economic data such as income, in which case directional non-parametric tests can be salvaged. Simulation analysis with generalized entropy measures allowing for heavy tails and contamination reveals that proposed lower confidence bounds provide concrete size and power improvements, particularly through bootstraps. Empirical analysis on within-country wage inequality and on world income inequality illustrates the usefulness of the proposed lower bound, as opposed to the erratic behavior of traditional upper bounds.
Keywords: Inequality measure; Generalized entropy measure; Confidence bound; Directional test; Bahadur-Savage impossibility; Bootstrap (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000119
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:33:y:2025:i:c:p:230-245
DOI: 10.1016/j.ecosta.2022.02.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().