ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control
Aurore Archimbaud,
Feriel Boulfani,
Xavier Gendre,
Klaus Nordhausen,
Anne Ruiz-Gazen and
Joni Virta
Econometrics and Statistics, 2025, vol. 33, issue C, 282-303
Abstract:
Multivariate functional anomaly detection has received a large amount of attention recently. Accounting both the time dimension and the correlations between variables is challenging due to the existence of different types of outliers and the dimension of the data. In the context of predictive maintenance and quality control, data sets often contain a large number of functional variables. However, most of the existing methods focus on a small number of functional variables. Moreover, in fields that have high reliability standards, detecting a small number of potential multivariate functional outliers with as few false positives as possible is crucial. In such a context, the adaptation of the Invariant Coordinate Selection (ICS) method from the multivariate to the multivariate functional case is of particular interest. Two extensions of ICS are proposed: point-wise and global. For both methods, the choice of the relevant components together with outlier identification and interpretation are discussed. A comparison is made on a predictive maintenance example from the avionics field and a quality control example from the microelectronics field. It appears that in such a context, point-wise and global ICS with a small number of selected components can be recommended.
Keywords: Affine invariance; Functional outlier map; Global ICS; Outliers; Point-wise ICS; Scatter matrices (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306222000247
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:33:y:2025:i:c:p:282-303
DOI: 10.1016/j.ecosta.2022.03.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().