Variable Selection in Macroeconomic Forecasting with Many Predictors
Zhenzhong Wang,
Zhengyuan Zhu and
Cindy Yu
Econometrics and Statistics, 2025, vol. 36, issue C, 19-36
Abstract:
In the data-rich environment, using many economic predictors to forecast a few key variables has become a new trend in econometrics. The commonly used approach is factor augment (FA) approach. This paper pursues another direction, variable selection (VS) approach, to handle high-dimensional predictors. VS is an active topic in statistics and computer science. However, it does not receive as much attention as FA in economics. This paper introduces several cutting-edge VS methods to economic forecasting, which includes: (1) classical greedy procedures; (2) l1 regularization; (3) false-discovery-rate control methods, (4) gradient descent with sparsification and (5) meta-heuristic algorithms. Comprehensive simulation studies are conducted to compare their variable selection accuracy and prediction performance under different scenarios. Among the reviewed methods, a meta-heuristic algorithm called sequential Monte Carlo algorithm performs the best. Surprisingly the classical forward selection is comparable to it and better than other more sophisticated algorithms. In addition, these VS methods are applied on economic forecasting and compared with the popular FA approach. It turns out for employment rate and CPI inflation, some VS methods can achieve considerable improvement over FA, and the selected predictors can be well explained by economic theories.
Keywords: Best subset; Dimensional reduction; Factor augment model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306223000035
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:36:y:2025:i:c:p:19-36
DOI: 10.1016/j.ecosta.2023.01.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().