Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data
Francesco Bartolucci,
Silvia Bacci and
Claudia Pigini
Econometrics and Statistics, 2017, vol. 3, issue C, 112-131
Abstract:
An alternative to using normally distributed random effects in a generalized linear mixed model for clustered data is based on assuming discrete random effects. This approach gives rise to a flexible class of finite-mixture models for multilevel and longitudinal data. A general Hausman-type misspecification test is proposed for these models based on the comparison between the marginal and the conditional maximum likelihood estimators of the regression parameters, focusing on the case of binary and ordered response variables. The test is simple to perform and it is particularly useful in detecting the possible correlation between the random effects and individual covariates, a situation often faced by practitioners and that causes severe inconsistency. This type of dependence is accounted for by suitable extensions of classical finite-mixture models. The approach is illustrated by a series of simulations and two empirical examples covering important fields of application.
Keywords: Hausman test; Latent class model; Longitudinal data; Multilevel data (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300314
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:3:y:2017:i:c:p:112-131
DOI: 10.1016/j.ecosta.2016.11.007
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().