A Fisher-scoring algorithm for fitting latent class models with individual covariates
Antonio Forcina
Econometrics and Statistics, 2017, vol. 3, issue C, 132-140
Abstract:
Describes a modified Fisher scoring algorithm for fitting a wide variety of latent class models for categorical responses when both the class weights and the conditional distributions of the responses depend on individual covariates through a multinomial logit. A simple expression for computing the score vector and the empirical information matrix is presented; it is shown that this matrix is positive definite under mild conditions. The Fisher scoring algorithm combines the empirical information matrix to update the step direction with a line search to optimize the step length. The algorithm converges for almost any choice of starting values. An application to the field of education transmission seems to suggest that, while parents’ education affects the child latent ability, their pressure affects directly the child’s achievements.
Keywords: Categorical data analysis; EM algorithms; Empirical information matrix; Fisher scoring algorithms; Individual covariates; Latent class models; Line search; multinomial logit (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300089
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:3:y:2017:i:c:p:132-140
DOI: 10.1016/j.ecosta.2016.07.001
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().