EconPapers    
Economics at your fingertips  
 

On efficient Bayesian inference for models with stochastic volatility

D.K. Sakaria and Jim Griffin

Econometrics and Statistics, 2017, vol. 3, issue C, 23-33

Abstract: An efficient method for Bayesian inference in stochastic volatility models uses a linear state space representation to define a Gibbs sampler in which the volatilities are jointly updated. This method involves the choice of an offset parameter and we illustrate how its choice can have an important effect on the posterior inference. A Metropolis–Hastings algorithm is developed to robustify this approach to choice of the offset parameter. The method is illustrated on simulated data with known parameters, the daily log returns of the Eurostoxx index and a Bayesian vector autoregressive model with stochastic volatility.

Keywords: Stochastic volatility; Bayesian methods; Markov chain Monte Carlo; Mixture offset representation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300090
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:3:y:2017:i:c:p:23-33

DOI: 10.1016/j.ecosta.2016.08.002

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:3:y:2017:i:c:p:23-33