A strategy for optimal bandwidth selection in Local Whittle estimation
Josu Arteche and
Jesus Orbe
Econometrics and Statistics, 2017, vol. 4, issue C, 3-17
Abstract:
The Local Whittle estimator is one of the most popular techniques for estimating the memory parameter in long memory series due to its simple implementation and nice asymptotic properties under mild conditions. However, its empirical performance depends heavily on the bandwidth, that is the band of frequencies used in the estimation. Different choices may lead to different conclusions about, for example, the stationarity of the series or its mean reversion. Optimal bandwidth selection is thus of crucial importance for accurate estimation of the memory parameter, but few strategies for assuring this have been proposed to date, and their results in applied contexts are poor. A new strategy based on minimising a bootstrap approximation of the mean square error is proposed here and its performance is shown to be convincing in an extensive Monte Carlo analysis and in applications to real series.
Keywords: Long memory; Local Whittle estimation; Bootstrap; Bandwidth selection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300041
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:4:y:2017:i:c:p:3-17
DOI: 10.1016/j.ecosta.2016.10.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().