Density estimation over spatio-temporal data streams
Aboubacar Amiri and
Sophie Dabo-Niang
Econometrics and Statistics, 2018, vol. 5, issue C, 148-170
Abstract:
In the last few years, data can be collected extremely easily in many scientific research fields. This became possible by the recent technological advances that have made online monitoring possible. In such situations, if real time or online estimations are expected, the usual nonparametric techniques rapidly require a lot of time to be computed and therefore become useless in practice. Adaptative counterparts of the classical kernel density estimators, that can be updated extremely easily when a new set of observations is available are investigated, for spatio-temporal processes with weak dependence structures. Mean square, uniform almost sure convergences and a central limit result are obtained under general and easily verifiable conditions. The efficiency of the considered estimators is evaluated through simulations and a real data application. The results show that the proposed method works well within the framework of a spatio-temporal data stream.
Keywords: Kernel density; Spatio-temporal processes; Weakly dependent data; Recursive kernel (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306217300734
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:5:y:2018:i:c:p:148-170
DOI: 10.1016/j.ecosta.2017.08.005
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().