Higher-order statistics for DSGE models
Willi Mutschler
Econometrics and Statistics, 2018, vol. 6, issue C, 44-56
Abstract:
Closed-form expressions for unconditional moments, cumulants and polyspectra of order higher than two are derived for non-Gaussian or nonlinear (pruned) solutions to DSGE models. Apart from the existence of moments and white noise property no distributional assumptions are needed. The accuracy and utility of the formulas for computing skewness and kurtosis are demonstrated by three prominent models: the baseline medium-sized New Keynesian model used for empirical analysis (first-order approximation), a small-scale business cycle model (second-order approximation) and the neoclassical growth model (third-order approximation). Both the Gaussian as well as Student’s t-distribution are considered as the underlying stochastic processes. Lastly, the efficiency gain of including higher-order statistics is demonstrated by the estimation of a RBC model within a Generalized Method of Moments framework.
Keywords: Higher-order moments; Cumulants; Polyspectra; Nonlinear DSGE; Pruning; GMM (search for similar items in EconPapers)
JEL-codes: C10 C51 E1 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300077
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
Working Paper: Higher-order statistics for DSGE models (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:6:y:2018:i:c:p:44-56
DOI: 10.1016/j.ecosta.2016.10.005
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().