Economics at your fingertips  

Correlation and scale in mixed logit models

Stephane Hess and Kenneth Train ()

Journal of choice modelling, 2017, vol. 23, issue C, 1-8

Abstract: This paper examines sources of correlation among utility coefficients in models allowing for random heterogeneity, including correlation that is induced by random scale heterogeneity. We distinguish the capabilities and limitations of various models, including mixed logit, generalized multinomial logit (G-MNL), latent class, and scale-adjusted latent class. We demonstrate that (i) mixed logit allows for all forms of correlation, including scale heterogeneity, (ii) G-MNL is a restricted form of mixed logit that, with an appropriate implementation, can allow for scale heterogeneity but (in its typical form) not other sources of correlation, (iii) none of the models disentangles scale heterogeneity from other sources of correlation, and (iv) models that assume that the only source of correlation is scale heterogeneity necessarily capture, in the estimated scale parameter, whatever other sources of correlation exist.

Keywords: Mixed logit; Correlation; Scale heterogeneity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (57) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.jocm.2017.03.001

Access Statistics for this article

Journal of choice modelling is currently edited by S. Hess and J.M. Rose

More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:eejocm:v:23:y:2017:i:c:p:1-8