Identifying the presence of heterogeneous discrete choice heuristics at an individual level
Felipe Gonzalez-Valdes and
Sebastián Raveau
Journal of choice modelling, 2018, vol. 28, issue C, 28-40
Abstract:
Discrete choice models that allow heterogeneous choice heuristics have been recently proposed and applied in different contexts. These models are traditionally based on latent classes, where each class represents a choice heuristic. Different specification challenges arise from applying the traditional approaches and identifiability issues are not unusual. We propose a Mixed Heuristic Model (MHM) to identify the presence of different choice heuristics through a latent class approach, giving higher flexibility to the class membership function through a random variable and analyse it at an individual level. The MHM identifies individuals who are likely to have followed the choice heuristic without explicitly specifying the class membership function. The MHM also avoids specifying the class membership and choice levels simultaneously. The MHM is tested on simulated data and applied to model an air travel survey. Results show that the MHM is able to identify the presence and structure of the heuristics with high accuracy within the simulated data. On the real data, the MHM identifies Random Utility Maximization and Stochastic Satisficing behaviour within the individuals.
Keywords: Heterogeneous heuristics; Discrete choice; Random utility maximization; Elimination by aspects; Stochastic satisficing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534517300945
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:28:y:2018:i:c:p:28-40
DOI: 10.1016/j.jocm.2018.05.001
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().