Specification of mixed logit models assisted by an optimization framework
Alexander Paz,
Cristian Arteaga and
Carlos Cobos
Journal of choice modelling, 2019, vol. 30, issue C, 50-60
Abstract:
Mixed logit is a widely used discrete outcome model that requires for the analyst to make three important decisions that affect the quality of the model specification. These decisions are: 1) what variables are considered in the analysis, 2) which variables are to be modeled with random parameters, and 3) what density function do these parameters follow. The literature provides guidance; however, a strong statistical background and an ad hoc search process are required to obtain an adequate model specification. Knowledge and data about the problem context are required; also, the process is time consuming, and there is no certainty that the specified model is the best available. This paper proposes an algorithm to assist analysts in the search of an appropriate specification in terms of explanatory power and goodness of fit for mixed logit models. The specification includes the variables that should be considered as well as the random and deterministic parameters and their corresponding distributions. Three experiments were performed to test the effectiveness of the proposed algorithm. Comparison with existing model specifications for the same datasets were performed. The results suggest that the proposed algorithm can find adequate model specifications, thereby supporting the analyst in the modeling process.
Keywords: Mixed logit; Model specification; Optimization; Simulated annealing; Discrete outcome (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S175553451830037X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:30:y:2019:i:c:p:50-60
DOI: 10.1016/j.jocm.2019.01.001
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().