EconPapers    
Economics at your fingertips  
 

A hierarchical agent-based approach to simulate a dynamic decision-making process of evacuees using reinforcement learning

Sajjad Hassanpour, Amir Abbas Rassafi, Vicente A. González and Jiamou Liu

Journal of choice modelling, 2021, vol. 39, issue C

Abstract: Simulation models are an undeniable tool to help researchers and designers forecast effects of definite policies regarding pedestrian social and collective movement behaviour. Considering both the environment's details and the complexity of human behaviour in choosing paths simultaneously is the main challenge in micro-simulation pedestrian dynamics models. This paper aims to present a novel comprehensive hierarchical agent-based simulation of pedestrian evacuation from a dynamic network of the environment using reinforcement learning, which is the closest to human behaviour among the other machine learning algorithms. In the approach, agents autonomously decide through a three-layer hierarchical model, including goal, node, and cell selection layers. A multinomial logit model is used to model the process of choosing the main movement direction at each time-step. The proposed model was successfully tested to simulate the pedestrian evacuation process from the Britomart Transport Centre platforms in Auckland during an abstract destructive event. Maximum evacuation flow, total evacuation time, average evacuation time, and average evacuation flow were investigated as dependent variables through different evacuation scenarios. The results from the approach can be used by designers and managers to optimise the quality of evacuation; also, the proposed model has the potential of becoming a potent tool for constructional management if coupled with other constructional tools.

Keywords: Evacuation simulation; Hierarchical architecture; Agent-based models; Reinforcement learning; Discrete choice models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S175553452100021X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:39:y:2021:i:c:s175553452100021x

DOI: 10.1016/j.jocm.2021.100288

Access Statistics for this article

Journal of choice modelling is currently edited by S. Hess and J.M. Rose

More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eejocm:v:39:y:2021:i:c:s175553452100021x