Sample size selection for discrete choice experiments using design features
Samson Yaekob Assele,
Michel Meulders and
Martina Vandebroek
Journal of choice modelling, 2023, vol. 49, issue C
Abstract:
In discrete choice experiment (DCE) studies, selecting the appropriate sample size remains a challenge. The question of the required sample size for a DCE is addressed in the literature in two distinct approaches: a rule-of-thumb approach and an approach based on the statistical error of the parameter of interest. The former is less accurate and does not depend on the desired power and significance level, whereas the latter requires knowing the complete design which may not be known at the planning stage. This paper proposes a new rule of thumb as well as a new regression-based method that requires knowing certain design characteristics rather than the complete design and takes into account the power and significance level. We compare the sample size estimated using the proposed methods with the true required sample size based on the statistical error of the parameter of interest and the approximations given by the existing rules of thumb. The results show that both the new rule of thumb and the regression-based approach improve the magnitude and proportion of underestimation compared to the most commonly used rule of thumb of Orme. Though the proposed approaches perform in general similarly to Tang’s rule which improves Orme’s rule, they seem to do better for large settings in terms of the number of choice sets and the number of alternatives per choice set in reducing underestimation. Moreover, we have demonstrated the possibility to adapt the regression-based approaches to take into account other scenarios and choice set complexity.
Keywords: Sample size calculation; Discrete choice experiment; D-optimal design; Rule of thumb; Linear and quantile regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534523000374
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:49:y:2023:i:c:s1755534523000374
DOI: 10.1016/j.jocm.2023.100436
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().