EconPapers    
Economics at your fingertips  
 

Resampling estimation of discrete choice models

Nicola Ortelli, Matthieu de Lapparent and Michel Bierlaire

Journal of choice modelling, 2024, vol. 50, issue C

Abstract: In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset-reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality-sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode choice dataset: the obtained results show that the samples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.

Keywords: Discrete choice models; Maximum likelihood estimation; Dataset reduction; Sample size; Locality-sensitive hashing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534523000684
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:50:y:2024:i:c:s1755534523000684

DOI: 10.1016/j.jocm.2023.100467

Access Statistics for this article

Journal of choice modelling is currently edited by S. Hess and J.M. Rose

More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eejocm:v:50:y:2024:i:c:s1755534523000684