EconPapers    
Economics at your fingertips  
 

Variable reduction, sample selection bias and bank retail credit scoring

Andrew Marshall, Leilei Tang and Alistair Milne ()

Journal of Empirical Finance, 2010, vol. 17, issue 3, 501-512

Abstract: This paper investigates the effect of including the customer loan approval process to the estimation of loan performance and explores the influence of sample selection bias in predicting the probability of default. The bootstrap variable reduction technique is applied to reduce the variable dimension for a large data-set drawn from a major UK retail bank. The results show a statistically significant correlation between the loan approval and performance processes. We further demonstrate an economically significant improvement in forecasting performance when taking into account sample selection bias. We conclude that financial institutions can obtain benefits by correcting for sample selection bias in their credit scoring models.

Keywords: Bootstrap; variable; selection; Credit; scoring; Loan; performance; forecasting; Sample; selection; bias (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927-5398(09)00104-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:17:y:2010:i:3:p:501-512

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:empfin:v:17:y:2010:i:3:p:501-512