Modeling structural changes in the volatility process
Bart Frijns,
Thorsten Lehnert and
Remco Zwinkels ()
Journal of Empirical Finance, 2011, vol. 18, issue 3, 522-532
Abstract:
GARCH-type models have been very successful in describing the volatility dynamics of financial return series for short periods of time. However, the time-varying behavior of investors, for example, may cause the structure of volatility to change and the assumption of stationarity is no longer plausible. To deal with this issue, the current paper proposes a conditional volatility model with time-varying coefficients based on a multinomial switching mechanism. By giving more weight to either the persistence or shock term in a GARCH model, conditional on their relative ability to forecast a benchmark volatility measure, the switching reinforces the persistent nature of the GARCH model. The estimation of this benchmark volatility targeting or BVT-GARCH model for Dow 30 stocks indicates that the switching model is able to outperform a number of relevant GARCH setups, both in- and out-of-sample, also without any informational advantages.
Keywords: GARCH; Time; varying; coefficients; Multinomial; logit (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539811000065
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Modelling structural changes in the volatility process (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:18:y:2011:i:3:p:522-532
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().