EconPapers    
Economics at your fingertips  
 

Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions

Dongming Zhu and John Galbraith

Journal of Empirical Finance, 2011, vol. 18, issue 4, 765-778

Abstract: Financial returns typically display heavy tails and some degree of skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using recent generalizations of the asymmetric Student-t and exponential power distributions to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial return volatility and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distributions are used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide evidence for the usefulness of the general distributions in improving fit and prediction of downside market risk of financial assets. Constrained versions, corresponding with distributions used in the previous literature, are also estimated in order to provide a comparison of the performance of different conditional distributions.

Keywords: Asymmetric; distribution; Expected; shortfall; NGARCH; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539811000296
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:18:y:2011:i:4:p:765-778

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:empfin:v:18:y:2011:i:4:p:765-778