Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions
Dongming Zhu and
John Galbraith
Journal of Empirical Finance, 2011, vol. 18, issue 4, 765-778
Abstract:
Financial returns typically display heavy tails and some degree of skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using recent generalizations of the asymmetric Student-t and exponential power distributions to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial return volatility and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distributions are used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide evidence for the usefulness of the general distributions in improving fit and prediction of downside market risk of financial assets. Constrained versions, corresponding with distributions used in the previous literature, are also estimated in order to provide a comparison of the performance of different conditional distributions.
Keywords: Asymmetric; distribution; Expected; shortfall; NGARCH; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (46)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539811000296
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:18:y:2011:i:4:p:765-778
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().