Multi-period credit default prediction with time-varying covariates
Walter Orth
Journal of Empirical Finance, 2013, vol. 21, issue C, 214-222
Abstract:
In credit default prediction models, the need to deal with time-varying covariates often arises. For instance, in the context of corporate default prediction a typical approach is to estimate a hazard model by regressing the hazard rate on time-varying covariates like balance sheet or stock market variables. If the prediction horizon covers multiple periods, this leads to the problem that the future evolution of these covariates is unknown. Consequently, some authors have proposed a framework that augments the prediction problem by covariate forecasting models. In this paper, we present simple alternatives for multi-period prediction that avoid the burden to specify and estimate a model for the covariate processes. In an application to North American public firms, we show that the proposed models deliver high out-of-sample predictive accuracy.
Keywords: Credit default; Multi-period predictions; Hazard models; Panel data; Out-of-sample tests (search for similar items in EconPapers)
JEL-codes: C41 C53 C58 G17 G32 G33 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539813000078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:21:y:2013:i:c:p:214-222
DOI: 10.1016/j.jempfin.2013.01.006
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().