Term structure dynamics with macro-factors using high frequency data
Hwagyun Kim () and
Hail Park
Journal of Empirical Finance, 2013, vol. 22, issue C, 78-93
Abstract:
This paper empirically studies the role of macro-factors in explaining and predicting daily bond yields. In general, macro-finance models use low-frequency data to match with macroeconomic variables available only at low frequencies. To deal with this, we construct and estimate a tractable no-arbitrage affine model with both conventional latent factors and macro-factors by imposing cross-equation restrictions on the daily yields of bonds with different maturities, credit risks, and inflation indexation. The estimation results using both the US and the UK data show that the estimated macro-factors significantly predict actual inflation and the output gap. In addition, our daily macro-term structure model forecasts better than no-arbitrage models with only latent factors as well as other statistical models.
Keywords: Term structure estimation; Latent macro-factors; Yield forecasts (search for similar items in EconPapers)
JEL-codes: C13 C32 E43 G12 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539813000224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:22:y:2013:i:c:p:78-93
DOI: 10.1016/j.jempfin.2013.03.003
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().