Short-sale constraints and the idiosyncratic volatility puzzle: An event study approach
Danling Jiang,
David R. Peterson and
James Doran ()
Journal of Empirical Finance, 2014, vol. 28, issue C, 36-59
Abstract:
Using three natural experiments, we test the hypothesis that investor overconfidence produces overpricing of high idiosyncratic volatility stocks in the presence of binding short-sale constraints. We study three events: IPO lockup expirations, option introductions, and the 2008 short-sale ban on financial firms. Consistent with our prediction, we show that when short-sale constraints are relaxed, event stocks with high idiosyncratic volatility tend to experience greater price reductions, as well as larger increases in trading volume and short interest, than those with low idiosyncratic volatility. These results hold when we benchmark event stocks with non-event stocks with comparable idiosyncratic volatility. Overall, our findings suggest that biased investor beliefs and binding short-sale constraints contribute to idiosyncratic volatility overpricing.
Keywords: Idiosyncratic volatility; Short-sale constraints; IPO lockup; Option introduction; Short-sale ban (search for similar items in EconPapers)
JEL-codes: G12 G14 G18 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539814000589
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:28:y:2014:i:c:p:36-59
DOI: 10.1016/j.jempfin.2014.05.005
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().