The frequency of regime switching in financial market volatility
Ahmed BenSaïda
Journal of Empirical Finance, 2015, vol. 32, issue C, 63-79
Abstract:
The mechanism of risk responses to market shocks is considered as stagnant in recent financial literature, whether during normal or stress periods. Since the returns are heteroskedastic, a little consideration was given to volatility structural breaks and diverse states. In this study, we conduct extensive simulations to prove that the switching regime GARCH model, under the highly flexible skewed generalized t (SGT) distribution, is remarkably efficient in detecting different volatility states. Next, we examine the switching regime in the S&P 500 volatility for weekly, daily, 10-minute and 1-minute returns. Results show that the volatility switches regimes frequently, and differences between the distributions of the high and low volatility states become more accentuated as the frequency increases. Moreover, the SGT is highly preferable to the usually employed skewed t distribution.
Keywords: Volatility; Risk response; Simulation; Skewed generalized t; Switching regime (search for similar items in EconPapers)
JEL-codes: C22 C58 G17 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539815000237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:32:y:2015:i:c:p:63-79
DOI: 10.1016/j.jempfin.2015.03.005
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().