The predictive density simulation of the yield curve with a zero lower bound
Kyu Ho Kang
Journal of Empirical Finance, 2015, vol. 33, issue C, 51-66
Abstract:
Since Diebold and Li (2006) proved the outstanding performance of a three-factor Gaussian dynamic Nelson–Siegel (DNS) model in forecasting the U.S. yield curve, the DNS model and its variants have been widely applied in many areas of macroeconomics and finance. However, despite its popularity one practical problem with the DNS approach is that it produces a substantially high probability of negative future short-term government bond yields for the recent financial crises. In this study, we provide predictive densities for yield curves that have, in general, non-negative support. To this end, we propose and estimate a new DNS model that takes a zero lower bound into account. In the model, the yields are determined as a linear function of the vector-autoregressive factors, which is constrained to be non-negative. We employ a Bayesian econometric approach for estimation and density forecasting. As a result of the zero lower bound restriction, the Gibbs-sampling method is no longer applicable, unlike in standard DNS models. Instead, we propose an efficient Markov chain Monte Carlo method, and demonstrate that the non-negative predictive yield curve density, as well as the model parameters and factors can be simulated with high efficiency. Moreover, we find that, for the U.S. yield curve, the Svensson four-factor DNS model with a zero lower bound is most preferred among the alternatives we consider.
Keywords: Out-of-sample prediction; Predictive accuracy; Bayesian MCMC estimation (search for similar items in EconPapers)
JEL-codes: C11 C53 E43 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539815000651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:33:y:2015:i:c:p:51-66
DOI: 10.1016/j.jempfin.2015.06.002
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().