The economic value of volatility timing with realized jumps
Ingmar Nolte and
Qi Xu
Journal of Empirical Finance, 2015, vol. 34, issue C, 45-59
Abstract:
This paper comprehensively investigates the role of realized jumps detected from high frequency data in predicting future volatility from both statistical and economic perspectives. Using seven major jump tests, we show that separating jumps from diffusion improves volatility forecasting both in-sample and out-of-sample. Moreover, we show that these statistical improvements can be translated into economic value. We find that a risk-averse investor can significantly improve her portfolio performance by incorporating realized jumps into a volatility timing based portfolio strategy. Our results hold true across the majority of jump tests, and are robust to controlling for microstructure effects and transaction costs.
Keywords: High frequency data; Jumps; Nonparametric tests; Asset allocation; Volatility forecasting; Realized volatility (search for similar items in EconPapers)
JEL-codes: C53 C58 G11 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539815000912
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:34:y:2015:i:c:p:45-59
DOI: 10.1016/j.jempfin.2015.03.019
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().