Forecasting the term structure of government bond yields in unstable environments
Joseph Byrne,
Shuo Cao and
Dimitris Korobilis
Journal of Empirical Finance, 2017, vol. 44, issue C, 209-225
Abstract:
In this paper we model and predict the term structure of US interest rates in a data-rich and unstable environment. The dynamic Nelson–Siegel factor model is extended to allow the model dimension and the parameters to change over time, in order to account for both model uncertainty and sudden structural changes in one setting. The proposed specification performs better than several alternatives, since it incorporates additional macro-finance information during hard times, while it allows for more parsimonious models to be relevant during normal periods. A dynamic variance decomposition measure constructed from our model shows that parameter uncertainty and model uncertainty regarding different choices of predictors explain a large proportion of the predictive variance of bond yields.
Keywords: Term structure of interest rates; Nelson–Siegel; Dynamic model averaging; Bayesian methods; Term premia (search for similar items in EconPapers)
JEL-codes: C32 C52 E43 E47 G17 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539817300804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:44:y:2017:i:c:p:209-225
DOI: 10.1016/j.jempfin.2017.09.004
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().