EconPapers    
Economics at your fingertips  
 

Do the limit orders of proprietary and agency algorithmic traders discover or obscure security prices?

Samarpan Nawn and Ashok Banerjee

Journal of Empirical Finance, 2019, vol. 53, issue C, 109-125

Abstract: We investigate the relative roles of limit orders from proprietary algorithmic traders (PAT), agency algorithmic traders (AAT) and non-algorithmic traders (NAT) in the discovery of security prices in National Stock Exchange (NSE) of India. Our results suggest that PAT’s limit orders are most informative, however, AAT and NAT still contribute substantially to price discovery. Contrary to popular belief that algorithmic traders are only interested in large stocks, we find that two algorithmic trading groups together contribute nearly 30%–40% of the price discovery in both small and medium capitalization stocks whereas their combined share of trading volume only ranges between 10%–15% in these stocks. We see that price discovery contribution of PAT’s limit orders increase when we conduct our analysis at longer time gaps. This finding is evidence against the popular notion that HFTs only make prices informative in the very short run. We also find that LOB imbalance of PAT is most informative among three groups of traders and find no evidence to support the popular notion that fast traders often use limit orders to “spoof” market participants about future price movements. However, much of the informativeness of PAT LOB imbalance withers away when PAT places orders opposite to rest of the market suggesting that rather than generating information PAT possibly uses information produced by others.

Keywords: HFT; Limit orders; Quote; Market manipulation (search for similar items in EconPapers)
JEL-codes: G14 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539819300532
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:53:y:2019:i:c:p:109-125

DOI: 10.1016/j.jempfin.2019.06.003

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:empfin:v:53:y:2019:i:c:p:109-125