Economics at your fingertips  

Range-based DCC models for covariance and value-at-risk forecasting

Piotr Fiszeder (), Marcin Faldzinski () and Peter Molnár

Journal of Empirical Finance, 2019, vol. 54, issue C, 58-76

Abstract: The dynamic conditional correlation (DCC) model by Engle (2002) is one of the most popular multivariate volatility models. This model is based solely on closing prices. It has been documented in the literature that the high and low prices of a given day can be used to obtain an efficient volatility estimation. We therefore suggest a model that incorporates high and low prices into the DCC framework. We conduct an empirical evaluation of this model on three datasets: currencies, stocks, and commodity exchange traded funds. Regardless of whether we consider in-sample fit, covariance forecasts or value-at-risk forecasts, our model outperforms not only the standard DCC model, but also an alternative range-based DCC model.

Keywords: Volatility; Dynamic conditional correlation; High-low range; Covariance forecasting; Value-at-risk (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.jempfin.2019.08.004

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2022-06-23
Handle: RePEc:eee:empfin:v:54:y:2019:i:c:p:58-76