A comparison of non-Gaussian VaR estimation and portfolio construction techniques
David Allen,
Colin Lizieri and
Stephen Satchell
Journal of Empirical Finance, 2020, vol. 58, issue C, 356-368
Abstract:
We propose a multivariate model of returns that accounts for four of the stylised facts of financial data: heavy tails, skew, volatility clustering, and asymmetric dependence with the aim of improving the accuracy of risk estimates and increasing out-of-sample utility of investors’ portfolios. We accommodate volatility clustering, the generalised Pareto distribution to capture heavy tails and skew, and the skewed-t copula to provide for asymmetric dependence. The proposed approach produces more accurate VaR estimates than seven competing approaches across eight data sets encompassing five asset classes. We show that this produces portfolios with higher utility, and lower downside risk than alternative approaches including mean–variance. We confirm that investors can substantially increase utility by accounting for departures from normality.
Keywords: VaR; Tail-risk; Skewed-t copula; Portfolio optimisation; Risk management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539820300402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:58:y:2020:i:c:p:356-368
DOI: 10.1016/j.jempfin.2020.07.001
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().