Modeling the cross-section of stock returns using sensible models in a model pool
I-Hsuan Ethan Chiang,
Yin Liao and
Qing Zhou
Journal of Empirical Finance, 2021, vol. 60, issue C, 56-73
Abstract:
An increase in the number of asset pricing models intensifies model uncertainties in asset pricing. While a pure “model selection” (singling out a best model) can result in a loss of useful information, a full “model pooling” may increase the risk of including noisy information. We make a trade-off between the two methods and develop a new two-step trimming-then-pooling method to forecast the joint distributions of asset returns using a large pool of asset pricing models. Our method allows investors to focus on certain regions of the distributions. In the first step, we trim the uninformative models from a pool of candidates, and in the second step, we pool the forecasts of the surviving models. We find that our method significantly enhances portfolio performance and predicts downside risk precisely, and the improvements are mainly due to trimming. The pool of sensible models becomes larger when focusing on extreme events, responds rapidly to rising uncertainty, and reflects the magnitude of factor premiums. These findings provide new insights into asset pricing model evaluation.
Keywords: Asset pricing model; Model uncertainty; Model confidence set; Model pooling; Model selection; Joint density forecast (search for similar items in EconPapers)
JEL-codes: C52 C53 C58 G12 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539820300840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:60:y:2021:i:c:p:56-73
DOI: 10.1016/j.jempfin.2020.11.003
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().