Predictive regression with p-lags and order-q autoregressive predictors
Harshanie L. Jayetileke,
You-Gan Wang and
Min Zhu
Journal of Empirical Finance, 2021, vol. 62, issue C, 282-293
Abstract:
This paper considers predictive regressions, where yt is predicted by all p lags of xt, here with xt being autoregressive of order q, PR(p,q). The literature considers model properties in the cases where p=q. We demonstrate that the current augmented regression method can still reduce the bias in predictive coefficients, but its efficiency depends on correctly specifying both p and q. We propose an estimation framework for the predictive regression, PR(p,q), with a data-driven auto-selection of p and q to achieve the best bias reduction in predictive coefficients. The corresponding hypothesis testing procedure is also derived. The efficiency of the proposed method is demonstrated with simulations. Empirical applications to equity premium prediction illustrate the substantial difference between the estimates of our method and those obtained by the common predictive regressions with p=q.
Keywords: Predictive regressions; Bias; Augmented regression; Return predictability (search for similar items in EconPapers)
JEL-codes: C14 G12 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539821000311
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:62:y:2021:i:c:p:282-293
DOI: 10.1016/j.jempfin.2021.04.006
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().