The transformed Gram Charlier distribution: Parametric properties and financial risk applications
Ángel León and
Trino Ñíguez Grau
Journal of Empirical Finance, 2021, vol. 63, issue C, 323-349
Abstract:
In this paper we study an extension of the Gram–Charlier (GC) density in Jondeau and Rockinger (2001) which consists of a Gallant and Nychka (1987) transformation to ensure positivity without parameter restrictions. We derive its parametric properties such as unimodality, cumulative distribution, higher-order moments, truncated moments, and the closed-form expressions for the expected shortfall (ES) and lower partial moments. We obtain the analytic kth order stationarity conditions for the unconditional moments of the TGARCH model under the transformed GC (TGC) density. In an empirical application to asset return series, we estimate the tail index; backtest the density, VaR and ES; and implement a comparative analysis based on Hansen’s skewed-t distribution. Finally, we present extensions to time-varying conditional skewness and kurtosis, and a new class of mixture densities based on this TGC distribution.
Keywords: Backtesting; Expected shortfall; Kurtosis; Skewness; Tail index; Unimodality (search for similar items in EconPapers)
JEL-codes: C2 C5 G1 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539821000529
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:63:y:2021:i:c:p:323-349
DOI: 10.1016/j.jempfin.2021.07.004
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().