Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices
Gianluca De Nard and
Zhao Zhao
Journal of Empirical Finance, 2023, vol. 72, issue C, 23-35
Abstract:
Existing factor models struggle to model the covariance matrix for a large number of stocks and factors. Therefore, we introduce a new covariance matrix estimator that first shrinks the factor model coefficients and then applies nonlinear shrinkage to the residuals and factors. The estimator blends a regularized factor structure with conditional heteroskedasticity of residuals and factors and displays superior all-around performance against various competitors. We show that for the proposed double-shrinkage estimator, it is enough to use only the market factor or the most important latent factor(s). Thus there is no need for laboriously taking into account the factor zoo.
Keywords: Double-shrinkage; Factor models; Markowitz portfolio selection; Multivariate GARCH; Nonlinear shrinkage; Regularization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539823000130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:72:y:2023:i:c:p:23-35
DOI: 10.1016/j.jempfin.2023.02.003
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().