An adaptive long memory conditional correlation model
Jonathan Dark
Journal of Empirical Finance, 2024, vol. 75, issue C
Abstract:
We propose a conditional correlation model with long memory dependence and smooth structural change. Previous literature has considered correlation and covariance models with structural change or long memory, but this is the first paper to jointly model both features. The correlation matrix is decomposed into long and short run components. Short run correlations converge hypergeometrically towards a slow moving long run correlation matrix that evolves according to one or more flexible Fourier forms. The model is applied to two data sets: a US equity portfolio; and a US equity, bond, gold and oil portfolio. Model fit and out of sample forecasts over 1 to 60 day horizons support the proposed approach.
Keywords: Long memory; Dynamic conditional correlation; Smooth structural change; Flexible Fourier form; Forecasting; Penalised MLE (search for similar items in EconPapers)
JEL-codes: C32 C58 G11 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539823001305
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:75:y:2024:i:c:s0927539823001305
DOI: 10.1016/j.jempfin.2023.101463
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().