EconPapers    
Economics at your fingertips  
 

Estimation and inference in low frequency factor model regressions with overlapping observations

Asad Dossani

Journal of Empirical Finance, 2024, vol. 78, issue C

Abstract: A low frequency factor model regression uses changes or returns computed at a lower frequency than data available. Using overlapping observations to estimate low frequency factor model regressions results in more efficient estimates of OLS coefficients and standard errors, relative to using independent observations or high frequency estimates. I derive the relevant inference and propose a new method to correct for the induced autocorrelation. I present a series of simulations and empirical examples to support the theoretical results. In tests of asset pricing models, using overlapping observations results in lower pricing errors, compared to existing alternatives.

Keywords: Autocorrelation; Asset pricing (search for similar items in EconPapers)
JEL-codes: C5 G1 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539824000719
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:78:y:2024:i:c:s0927539824000719

DOI: 10.1016/j.jempfin.2024.101536

Access Statistics for this article

Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff

More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:empfin:v:78:y:2024:i:c:s0927539824000719