Using the Bayesian sampling method to estimate corporate loss given default distribution
Xiaofei Zhang and
Xinlei Zhao
Journal of Empirical Finance, 2024, vol. 79, issue C
Abstract:
We use Markov chain Monte Carlo (MCMC) sampling to draw model coefficients to generate LGD distributions. We find that applying this Bayesian method on a sophisticated model, such as the zero-one-inflated beta (ZOIB) model, that accounts for the bi-modal distribution of the LGDs can generate LGD distributions that mimic the observed distributions well. By contrast, applying this Bayesian sampling approach on a simple model such as Tobit cannot capture the bi-modal LGD distributions accurately. Finally, we argue that this Bayesian sampling approach to generate LGD distributions is better fit for the stress testing purpose than the typical approach to estimate LGD model coefficients and then stress the macro variables. The latter approach yields stressed LGDs that may not be conservative enough, even if the macro variables are stressed to their worst historical values.
Keywords: Finance; Loss given default; Bi-modal distribution; Bayesian; Zero-one-inflated beta model (search for similar items in EconPapers)
JEL-codes: G21 G28 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0927539824000744
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:empfin:v:79:y:2024:i:c:s0927539824000744
DOI: 10.1016/j.jempfin.2024.101540
Access Statistics for this article
Journal of Empirical Finance is currently edited by R. T. Baillie, F. C. Palm, Th. J. Vermaelen and C. C. P. Wolff
More articles in Journal of Empirical Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().