Forecasting oil prices: Can large BVARs help?
Bo Zhang,
Bao H. Nguyen and
Chuanwang Sun
Energy Economics, 2024, vol. 137, issue C
Abstract:
Large Bayesian vector autoregression (BVAR) is a successful tool for forecasting macroeconomic variables, but the benefits to predict crude oil prices are rarely discussed. In this paper, we test the ability of BVAR to predict the real price of crude oil using a large dataset with 108 variables, taking into account all potential error structures that could affect modeling and forecasting, and performing multivariate analysis of crude oil prices, filling in the gaps in the field. The results demonstrated that the large BVAR having an excellent out-of-sample forecast performance at long horizons. Small and medium sizes BVAR provide more accurate information for short forecast horizons. We also find that the advantages of utilizing a large dataset become more obvious when incorporating non-standard error terms.
Keywords: Forecasting; Non-Gaussian; Stochastic volatility; Oil prices; Big data (search for similar items in EconPapers)
JEL-codes: C11 C32 C52 Q41 Q47 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988324005139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:137:y:2024:i:c:s0140988324005139
DOI: 10.1016/j.eneco.2024.107805
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().