Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach
Kun Yang,
Yuying Sun,
Yongmiao Hong and
Shouyang Wang
Energy Economics, 2024, vol. 139, issue C
Abstract:
This paper proposes a novel Multi-scale Interval-valued Decomposition Ensemble (MIDE) framework for forecasting European Union Allowance (EUA) carbon futures prices, which integrates Noise-assisted Multivariate Empirical Mode Decomposition (NAMEMD), Interval-valued Vector Auto-Regressive (IVAR) model, Interval Event Analysis (IEA) method, and Interval Multi-Layer Perceptron (IMLP). First, the original interval-valued carbon prices with other interval-valued control variables are decomposed and integrated into high, medium, and low-frequency components by NAMEMD. Second, IVAR is used to investigate the dynamics of the interval-valued vector system in low-frequency components, while IMLP is employed to characterize the high-frequency components. Besides, the interval event analysis investigates typical events that significantly impact carbon prices in the medium-frequency component. Furthermore, empirical findings indicate that our proposed MIDE learning approach significantly outperforms some other benchmark models in out-of-sample forecasting.
Keywords: Interval carbon price; Decomposed; Event analysis; Machine learning; Forecasting (search for similar items in EconPapers)
JEL-codes: C45 C53 C55 G14 Q41 Q47 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988324006601
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:139:y:2024:i:c:s0140988324006601
DOI: 10.1016/j.eneco.2024.107952
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().