Forecasting carbon futures returns using feature selection and Markov chain with sample distribution
Yuan Zhao,
Xue Gong,
Weiguo Zhang and
Weijun Xu
Energy Economics, 2024, vol. 140, issue C
Abstract:
The accurate forecasting of carbon returns is paramount for enabling informed investment decisions, promoting emissions reduction, and effectively shaping policies to combat climate change. In this paper, we propose a novel method to improve carbon returns predictability in a data-rich environment. The innovations of the model are manifested in two key dimensions: (i) a feature selection strategy based on the minimum prediction error is introduced; (ii) a novel Markov chain with sample distribution considering both prediction and parameter estimation is proposed to quantify the error information and perfect the prediction performance by error modification. Our empirical findings demonstrate that the proposed model outperforms a comprehensive array of competing models, both in point and interval forecasting of carbon returns. The results are consistently confirmed in various robustness checks. Finally, we show that the enhanced prediction performance of the proposed model is economically significant, which can help investors make favorable decisions.
Keywords: Carbon pricing; Feature selection; Error modification; Markov chain with sample distribution (search for similar items in EconPapers)
JEL-codes: C53 C58 F37 G11 G15 G17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988324006704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:140:y:2024:i:c:s0140988324006704
DOI: 10.1016/j.eneco.2024.107962
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().