Do global COVOL and geopolitical risks affect clean energy prices? Evidence from explainable artificial intelligence models
Sami Ben Jabeur,
Yassine Bakkar and
Oguzhan Cepni
Energy Economics, 2025, vol. 141, issue C
Abstract:
We investigate the impact of global common volatility and geopolitical risks on clean energy prices. Our study utilizes daily data from January 1, 2001, to March 18, 2024. Using a new framework based on explainable artificial intelligence (XAI) methods, our findings demonstrate that the COVOL index outperforms the geopolitical risk index in accurately predicting clean energy prices. Furthermore, the Extreme Trees algorithm shows superior performance compared to traditional regression techniques. Our findings indicate that XAI improves transparency, thereby making a substantial contribution to agile decision-making in predicting clean energy prices. Practitioners, including investors and portfolio managers, can enhance investment decisions and manage systemic risks by incorporating COVOL into their risk assessment and asset allocation models.
Keywords: COVOL; Geopolitical risks; Global financial risk; Clean energy; Explainable Artificial Intelligence Models (search for similar items in EconPapers)
JEL-codes: F3 F4 G15 G17 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988324008211
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324008211
DOI: 10.1016/j.eneco.2024.108112
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().