Generators' bidding behavior in the NYISO day-ahead wholesale electricity market
Ning Zhang
Energy Economics, 2009, vol. 31, issue 6, 897-913
Abstract:
This paper proposes a statistical and econometric model to analyze the generators' bidding behavior in the NYISO day-ahead wholesale electricity market. The generator level bidding data show very strong persistence in generators' grouping choices over time. Using dynamic random effect ordered probit model, we find that persistence is characterized by positive state dependence and unobserved heterogeneity and state dependence is more important than unobserved heterogeneity. The finding of true state dependence suggests a scope for economic policy intervention. If NYISO can implement an effective policy to switch generators from higher price groups to lower price groups, the effect is likely to be lasting. As a result, the market price can be lowered in the long-run. Generators' offered capacity is estimated by a two-stage sample selection model. The estimated results show that generators in higher-priced groups tend to withhold their capacity strategically to push up market prices. It further confirms the importance of an effective policy to turn generators into lower price groups in order to mitigate unexpected price spikes. The simulated market prices based on our estimated aggregate supply curve can replicate most volatility of actual DA market prices. Applying our models to different demand assumptions, we find that demand conditions can affect market prices significantly. It validates the importance of introducing demand side management during the restructure of electricity industry.
Keywords: Electricity; Bidding; behavior; Sample; selection; Ordered; probit; model (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00098-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:31:y:2009:i:6:p:897-913
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().