Energy risk management through self-exciting marked point process
Rodrigo Herrera
Energy Economics, 2013, vol. 38, issue C, 64-76
Abstract:
Crude oil is a dynamically traded commodity that affects many economies. We propose a collection of marked self-exciting point processes with dependent arrival rates for extreme events in oil markets and related risk measures. The models treat the time among extreme events in oil markets as a stochastic process. The main advantage of this approach is its capability to capture the short, medium and long-term behavior of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, as is common in extreme value theory applications. We make use of the proposed model in order to obtain an improved estimate for the Value at Risk in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk estimates improve as a result of finer modeling approach. This is supported by an empirical application in the representative West Texas Intermediate (WTI) and Brent crude oil markets.
Keywords: Extreme value theory; Energy market risk; Energy forecasting; Value at Risk; Marked self-exciting point process (search for similar items in EconPapers)
JEL-codes: C22 G15 G32 Q47 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988313000431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:38:y:2013:i:c:p:64-76
DOI: 10.1016/j.eneco.2013.03.003
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().