Power TAC: A competitive economic simulation of the smart grid
Wolfgang Ketter,
John Collins and
Prashant Reddy
Energy Economics, 2013, vol. 39, issue C, 262-270
Abstract:
Sustainable energy systems of the future will need more than efficient, clean, low-cost, renewable energy sources; they will also need efficient price signals that motivate sustainable energy consumption as well as a better real-time alignment of energy demand and supply. The Power Trading Agent Competition (Power TAC) is a rich competitive simulation of future retail power markets. This simulation will help us to understand the dynamics of customer and retailer decision-making and the robustness of market designs, by stimulating researchers to develop broker agents and benchmark them against each other. This will provide compelling, actionable information for policymakers and industry leaders. We describe the competition scenario in detail, and we demonstrate behaviors that arise from the interaction of customer and broker models.
Keywords: Competitive simulation; Smart grid; Trading agents; Energy markets (search for similar items in EconPapers)
JEL-codes: A A1 C C6 C8 C9 D D1 D4 D6 D7 H H2 H3 H4 H5 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0140988313000959
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eneeco:v:39:y:2013:i:c:p:262-270
DOI: 10.1016/j.eneco.2013.04.015
Access Statistics for this article
Energy Economics is currently edited by R. S. J. Tol, Beng Ang, Lance Bachmeier, Perry Sadorsky, Ugur Soytas and J. P. Weyant
More articles in Energy Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().